Diffusional and accretional growth of water drops in a rising adiabatic parcel: effects of the turbulent collision kernel

نویسنده

  • W. W. Grabowski
چکیده

A large set of rising adiabatic parcel simulations is executed to investigate the combined diffusional and accretional growth of cloud droplets in maritime and continental conditions, and to assess the impact of enhanced droplet collisions due to small-scale cloud turbulence. The microphysical model applies the droplet number density function to represent spectral evolution of cloud and rain/drizzle drops, and various numbers of bins in the numerical implementation, ranging from 40 to 320. Simulations are performed applying two traditional gravitational collection kernels and two kernels representing collisions of cloud droplets in the turbulent environment, with turbulent kinetic energy dissipation rates of 100 and 400 cm2 s−3. The overall result is that the rain initiation time significantly depends on the number of bins used, with earlier initiation of rain when the number of bins is low. This is explained as a combination of the increase of the width of activated droplet spectrum and enhanced numerical spreading of the spectrum during diffusional and collisional growth when the number of model bins is low. Simulations applying around 300 bins seem to produce rain at times which no longer depend on the number of bins, but the activation spectra are unrealistically narrow. These results call for an improved representation of droplet activation in numerical models of the type used in this study. Despite the numerical effects that impact the rain initiation time in different simulations, the turbulent speedup factor, the ratio of the rain initiation time for the turbulent collection kernel and the corresponding time for the gravitational kernel, is approximately independent of aerosol characteristics, parcel vertical velocity, and the number of bins used in the numerical model. The turbulent speedup factor is in the range 0.75–0.85 and 0.60–0.75 for the turbulent kinetic energy dissipation rates of 100 and 400 cm2 s−3, respectively. Correspondence to: W. W. Grabowski ([email protected])

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Growth of Cloud Droplets by Turbulent Collision–Coalescence

An open question in cloud physics is how rain forms in warm cumulus as rapidly as it is sometimes observed. In particular, the growth of cloud droplets across the size gap from 10 to 50 m in radius has not been fully explained. In this paper, the authors investigate the growth of cloud droplets by collision– coalescence, taking into account both the gravitational mechanism and several enhanceme...

متن کامل

Analytic Solutions for Evolving Size Distributions of Spherical Crystals or Droplets Undergoing Diffusional Growth in Different Regimes

Motivated by simulations of slow-growing contrail cirrus, the solution of the diffusional growth equations for a population of spherical ice crystals or water droplets is reexamined. For forcing specified by the evolution of the total water content above saturation within a parcel (whether driven by vertical motions, radiative heating, turbulent mixing, etc.) three behavior regimes are identifi...

متن کامل

Growth of Cloud Droplets in a Turbulent Environment

Motivated by the need to resolve the condensation-coalescence bottleneck in warm rain formation, a significant number of studies have emerged in the past 15 years concerning the growth of cloud droplets by water-vapor diffusion and by collision-coalescence in a turbulent environment.With regard to condensation, recent studies suggest that small-scale turbulence alone does not produce a signific...

متن کامل

Identification of Hazardous Situations using Kernel Density Estimation Method Based on Time to Collision, Case study: Left-turn on Unsignalized Intersection

The first step in improving traffic safety is identifying hazardous situations. Based on traffic accidents’ data, identifying hazardous situations in roads and the network is possible. However, in small areas such as intersections, especially in maneuvers resolution, identifying hazardous situations is impossible using accident’s data. In this paper, time-to-collision (TTC) as a traffic conflic...

متن کامل

Effects of Deficit and Cutoff Irrigation During Different Phenological Stages of Fruit Growth on Production in Mature Almond Trees cv. ‘Mamaei’

Regulated deficit irrigation (RDI) is commonly used during different phenological stages of fruit growth and development in almond trees to reduce the amount of irrigation water applied without or with only very small reductions in yield. Therefore, to study the effects of deficit and cutoff irrigation during different phenological stages of fruit growth and development in almond cv. “Mamaei” p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008